Journal of Organometallic Chemistry, 74 (1974) 279–288 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

COORDINATION COMPLEXES OF ACETYLENIC PHOSPHINES AND DIPHOSPHINES

VI. CARBONYL-AND π -CYCLOPENTADIENYL-NICKEL DERIVATIVES OF 3,3,3-TRIMETHYLPROPYNYLDIPHENYLPHOSPHINE AND PHENYL-ETHYNYLDIPHENYLPHOSPHINE

A.J. CARTY, H.N. PAIK and T.W. NG

Department of Chemistry, The University of Waterloo, Waterloo, Ontario (Canada) (Received January 28th, 1974)

Summary

The reactions of π -cyclopentadienylnickel carbonyl dimer with 3,3,3-trimethylpropynyldiphenylphosphine and phenylethynyldiphenylphosphine are described. The products have been characterized by elemental and mass spectral analysis, infrared and NMR spectroscopy. An acetylene bridged complex $(\pi$ -C₅ H₅Ni)₂Ph₂PC₂-t-Bu, containing an uncoordinated phosphorus atom, has been prepared. The complex can be oxidized to the phosphine oxide derivative $(\pi$ -C₅ H₅Ni)₂Ph₂P(O)C₂-t-Bu and converted to the phosphonium salts $(\pi$ -C₅ H₅Ni)₂(Ph₂P(R)C₂-t-Bu)X (R = Me, X = I; R = Et, X = Br) via reaction with methyl iodide or ethyl bromide. These are the first reported π -complexes of phosphonium salts. The complex $(\pi$ -C₅H₅Ni)₂Ph₂PC₂-t-Bu forms the novel mixed metal derivative [PdCl₂][$(\pi$ -C₅H₅Ni)₂Ph₂PC₂-t-Bu form bis(benzonitrile)palladium dichloride. The dicarbonyl complexes Ni(CO)₂(Ph₂PC₂R)₂ (R = t-Bu, Ph), the phospline oxide complex $(\pi$ -C₅H₅Ni)₂Ph₂PC₂Ph] are described.

Introduction

The phosphinoacetylenes $R_2PC=CR'$ are potentially ambidentate ligands with a capacity to coordinate as simple phosphines [1], as disubstituted acetylenes [2] or to utilize simultaneously the phosphorus lone pair and acetylenic π -orbitals in a polydentate bonding mode [3, 4]. Although all three of these possibilities have been realized it is apparent that phosphine behavior predominates for complexes of metals in their normal oxidation states while participation of the acetylenic triple bond in coordination requires a low valent metal site with a high affinity for alkyne π -electrons [2-4]. Furthermore, even in the latter situation, the phosphorus atom may compete effectively for the available site, as evidenced by the failure to prepare π -acetylene complexes of palladium(0) and platinum(0) from (Ph₃P)₄M (M = Pd, Pt) and ¹/₂h₋PC=CPPh₂ or from MCl₂-(Ph₂PC=CMe)₂ (M = Pd, Pt) by hydrazine reduction in the presence of excess ligand [5]. The present work was motivated by a search for simple phosphinoacetylene π -complexes for studies of acetylene oligomerisation reactions. In addition, a report that only one product, Ni(CO)(Ph₂PC=CPh)₃, was characterized from the reaction of $[\pi$ -C₅H₅Ni(CO)]₂ with Ph₂PC=CPh [6] seemed at variance with recent work describing the synthesis and structures of a range of phosphinoacetylene bridged tetracobalt decacarbonyl complexes [2]. The wellestablished structural analogy between the alkyne bridged Co₂(CO)₆(RC=CR) [7] and $(\pi$ -C₅H₅Ni)₂(RC=CR) [8] complexes suggested that compounds related to the latter should be readily available from $[\pi$ -C₅H₅Ni(CO)]₂ or $(\pi$ -C₅H₅)₂Ni and Ph₂PC=CR. This paper describes in detail the reactions of $[\pi$ -C₅H₅Ni(CO)]₂ and $(\pi$ -C₅H₅)₂Ni with Ph₂PC=CR (R = Ph, t-Bu).

The alkyne bridged complex $(\pi$ -C₅H₅Ni)₂Ph₂PC₂-t-Bu contains an uncoordinated phosphorus atom which can be oxidized, quaternized or utilized as a σ -donor in forming the novel mixed metal complex PdCl₂[(π -C₅H₅Ni)₂(Ph₂PC₂t-Bu)]₂. The dicarbonyl complexes Ni(CO)₂(Ph₂PC≡CR)₂ (R = Ph, t-Bu) and the trinuclear carbonyl complex Ni(CO)₃[(π -C₅H₅Ni)₂Ph₂PC₂Ph] are also described.

Experimental

Nickelocene $(\pi$ -C₅H₅)₂Ni was purchased from Research Organic Inorganic Chemical Corporation, Sun Valley, California. π -Cyclopentadienylnickel carbony dimer, $[\pi$ -C₅H₅Ni(CO)]₂ was prepared by the method of Tilney—Bassett [9]. The phosphinoacetylenes Ph₂PC \equiv C-t-Bu and Ph₂PC \equiv CPh were synthesized as previously described [10]. The solvents benzene, petroleum ether, diethyl ether and cyclohexane were dried and deoxygenated by refluxing over lithium aluminum hydride under a nitrogen atmosphere. A nitrogen atmosphere was routinely employed for carrying out reactions, chromatography, subsequent work-up and recrystallization. Chromatographic alumina and silica gel were Fisher A-540 and Merck Type 60 (30-70 mesh ASTM) respectively.

Microanalyses were carried out by Galbraith Laboratories. Perkin—Elmer 180 and 457 spectrophotometers were used for infrared measurements. Nuclear magnetic resonance spectra were recorded on a Varian T-60 spectrometer and mass spectra on an AEI MS 30 instrument at 70 eV.

Reaction of $(\pi - C_5 H_5)_2 Ni$ with $Ph_2PC \equiv C$ -t-Bu

A mixture of $(\pi$ -C₅H₅)₂Ni (0.1 g; 5.3 mmol) and Ph₂PC=C-t-Bu (1.33 g; 5.0 mmol) in benzene (50 ml) was refluxed for 12 h. The green solution was cooled, filtered under nitrogen and the solvent reduced to small volume. Careful chromatography on a silica-gel column made up in petroleum ether (80-100°) eluted the bands listed in Table 1. During chromatography some of the free ligand Ph₂PC=C-t-Bu was oxidized on the column to Ph₂P(O)C=C-t-Bu. Removal of solvent from the green solution obtained from the third band followed by addition of a few mls of petroleum ether and cooling at 0° gave green crystals of $(\pi$ -C₅H₅Ni)₂(Ph₂PC₂-t-Bu) (5%). This compound is very air sensitive in solution

TABLE 1

.........

Band	Color	Eluant	Compound
1	Blue-green	Petr,-ether	(π-C ₅ H ₅) ₂ Ni
2	Pale-yellow	Petrether	Ph2PC≡C-t-Bu
3	Green	Benzene	(n-C-H-Ni)2(Ph2PC2-t-Bu)
4	Green	Ether/acetone	(π-C ₅ H ₅ Ni) ₂ (Ph ₂ P(O)C ₂ -t-Bu)
		-	

and slowly decomposes in air. (Found: C, 65.20; H, 5.68; P, 5.83; Ni, 22.72. Calcd.: C, 65.43; H, 5.69; P, 6.03; Ni, 22.85%.)

The solution from band four was taken to dryness and the residue recrystallized from benzene/petroleum ether to yield green crystals of $(\pi$ -C₅H₅Ni)₂-(Ph₂P(O)C₂-t-Bu) (Found: C, 63.49; H, 6.05. Calcd.: C, 63.47; H, 5.48%.)

Reaction of $[\pi$ -C₅H₅Ni(CO)]₂ with Ph₂PC₂-t-Bu

A solution containing $[\pi-C_5H_5Ni(CO)]_2$ (0.92 g; 3.0 mmol) and Ph₂PC= C-t-Bu (1.33 g; 5.0 mmol) in benzene (50 ml) was refluxed under nitrogen for 24 h during which time the color changed from the bright red of $[\pi-C_5H_5Ni(CO)]_2$ to yellowish-brown and finally green. The green solution was cooled, filtered and chromatographed giving the bands described in Table 2.

Pale-yellow crystals of the dicarbonyl complex were obtained from the residue of band 1 on recrystallization from petroleum ether (10%). (Found: C, 69.73; H, 5.86. Calcd.: C, 70.50; H, 5.92%.)

The compound obtained from band 3 was present in only minute quantities and characterization was not attempted. The remaining two compounds proved to be identical to those obtained from the reaction with nickelocene.

INDUE 2			
Band	Color	Eluant	Compound
1	Pale-yellow	Petrether	Ni(CO) ₂ (Ph ₂ PC=C-t-Bu) ₂
2	Blue-green	Petrether	$(\pi - C_5 H_5)_2 Ni$
3	Yellow-brown	Petrether	
4	Green	Benzene	$(\pi - C_5 H_5 N_i)_2 (P_{2} - C_2 - t - B_u)$
5	Green	Ether/acetone	$(\pi - C_5 H_5 Ni)_2 (Ph_2 P(O)C_2 - t - Bu)$

Reaction of $[\pi$ -C₅H₅Ni(CO)]₂ with Ph₂PC=CPh

A mixture of $[\pi$ -C₅H₅Ni(CO)]₂ (1.6 g; 5.3 mmol), Ph₂PC=CPh (1.70 g; 5.9 mmol) and cyclohexane (6 ml) was sealed in a Carius tube and heated in an oven at 60° overnight. The red color gradually changed to greenish-brown and a dark solid precipitated. The sealed tube was opened under nitrogen, solvent removed and the residue dissolved in a minimum of benzene. Chromatography on an alumina column made up in petroleum ether yielded the bands mentioned in Table 3. Recrystallization of the solid from band 2 in ethanol gave pale yellow crystals of Ni(CO)₂(Ph₂PC=CPh)₂ (12%). (Found: C, 73.02; H, 4.51; P, 8.90. Calcd.: C, 73.39; H, 4.37; P. 9.03%.) The same compound was prepared by refluxing 2 moles of Ph₂PC=CPh with Ni(CO)₄ in ethanol for 6 h followed by recrystallization from the same solvent.

282	
404	

TABLE 3

Band	Color	Eluant	Compound
1	Pale-yellow	Petrether	(π-C5H5)2Ni
2	Yellow	Petrether	Ni(CO) ₂ (Ph ₂ PC=CPh) ₂
3	Pale-yellow	Petrether	Ph ₂ PC≡CPh
4	Green	4/1 Petrether/benzene	$Ni(CO)_3[(\pi-C_5H_5Ni)_2Ph_2PC_2Ph]$
5	Green	4/1 Petrether/benzene	Not characterized
6	Green	1/1 Benzene/ether	$(\pi - C_5 H_5 N_i)_2(Ph_2 P(O) C \equiv CPh)$

The solution from band 4 was reduced in volume, degassed heptane added and the solution filtered with a filter stick. The filtrate yielded green crystals of Ni(CO)₃ [(π -C₅H₅Ni)₂(Ph₂PC₂Ph)] on cooling (23%). (Found: C, 58.84; H, 3.75; P, 4.45. Calcd.: C, 58.58; H, 3.72; P, 4.53%.)

Green crystals of the oxide complex $(\pi - C_5 H_5 Ni)_2 (Ph_2 P(O)C_2 Ph)$ were obtained on recrystallization of the solid residue from band 6 in cyclohexane. (Found: C, 65.98; H, 4.53; P, 5.70. Calcd.: C, 65.70; H, 4.66; P, 5.74%.)

Reaction of $[\pi - C_5 H_5 Ni(CO)]_2$ with $Ph_2PC \equiv CPh$ at 60° for 72 h

These reaction conditions were those used by Efraty and King [6]. In agreement with these workers the major product under these conditions is Ni(CO)- $(Ph_2PC=CPh)_3$.

Reaction of $(\pi - C_5 H_5 Ni)_2 (Ph_2 PC_2 - t-Bu)$ with $CH_3 I$ and $C_2 H_5 Br$

A sample of $(\pi$ -C₅H₅Ni)₂(Ph₂PC₂-t-Bu) (250 mg) dissolved in dry benzene was stirred with a slight excess of CH₃I for 24 h. Dark green crystals of $(\pi$ -C₅H₅Ni)· (Ph₂P(Me)C₂-t-Bu)I were formed (62%). (Found: C, 53.30; H, 5.24. Calcd.: C, 53.11; H, 4.88%).

An analogous reaction with C_2H_5Br yielded dark green crystals of $(\pi$ - $C_5H_5Ni)_2(Ph_2P(C_2H_5)C_2-t-Bu)Br$ (51%). (Found: C, 57.85; H, 5.50. Calcd.: C, 57.81; H, 5.57%.)

Reaction of $(\pi - C_5 H_5 Ni)_2 (Ph_2 PC_2 - t-Bu)$ with trans- $(PhCN)_2 PdCl_2$

Reaction of $(\pi$ -C₅H₅Ni)₂(Ph₂PC₂-t-Bu) (50 mg; 0.1 mmol) in dry benzene for 18 h with the stoichiometric quantity of *trans*-(PhCN)₂PdCl₂ gave dark brown microcrystals of the complex PdCl₂[(π -C₅H₅Ni)₂(Ph₂PC₂-t-Bu)]₂ which crystallized with half a mole of benzene (65%) (Found: C, 57.02; H, 5.38; P, 4.63; Cl, 6.47. Calcd.: C, 56.95; H, 4.94; P, 4.97; Cl, 5.71%.)

Reaction of $Ni(CO)_4$ with $Ph_2PC \equiv C$ -t-Bu

On treating Ni(CO)₄ (0.42 g; 2.5 mmol) with Ph₂PC=C-t-Bu (1.33 g; 5 mmol) in dry ethanol (or ether) at reflux for several minutes a yellow precipitate was obtained. This was filtered off and the filtrate cooled to yield pale yellow crystals of Ni(CO)₂ (Ph₂PC=C-t-Bu)₂, characterized above.

Results and discussion

Cyclopentadienylnickel carbonyl dimer generally reacts with phosphines according to eqn. 1 [11, 12], although there are two known instances in which

$$[\pi - C_5 H_5 Ni(CO)]_2 + 2L \rightarrow Ni(CO)_2 L_2 + (\pi - C_5 H_5)_2 Ni$$
(1)

the major phosphine containing product is a monocarbonyl tris(phosphine) complex [6, 13]. Acetylenes displace the bridging carbon monoxide ligands of $[\pi-C_5H_5Ni(CO)]_2$, affording alkyne bridged complexes (eqn. 2) [9, 14]. The latter reaction is however complicated by decomposition of $[\pi-C_5H_5Ni(CO)]_2$

$$[\pi - C_5 H_5 Ni(CO)]_2 + RC \equiv CR' \rightarrow \pi - C_5 H_5 Ni - I - Ni - R - C_5 H_5 + 2CO$$
(2)

to the trimer $(\pi$ -C₅H₅)₃Ni₃(CO)₂, nickelocene and nickel carbonyl [15]. The same alkyne bridged complexes are accessible from the reaction of nickelocene with acetylenes [14, 16]. The phosphinoacetylenes Ph₂PC=CR (R = t-Bu, Ph) show behavior characteristic of both phosphines and disubstituted alkynes in their reactions with $[\pi$ -C₅H₅Ni(CO)]₂. Three new complexes were isolated by chromatography in each case. The pale yellow complex Ni(CO)₂(Ph₂PC= C-t-Bu)₂ was characterized as a disubstituted phosphine derivative (I) of NI(CO)₄

on the basis of microanalysis, a mass spectrum (Table 4) exhibiting a parent ion peak at m/e 646 and ions at m/e 618, 590 due to consecutive loss of two carbonyl groups and infrared spectra in the $\nu(CO)$ region (Table 5) typical of other Ni(CO)₂L₂ (L = tertiary phosphine) species [cf. Ni(CO)₂(Ph₃P)₂; $\nu(CO)$ C₆H₁₂; 2010, 1955 cm⁻¹ [17]. The presence of two $\nu(C\equiv C)$ bands at 2201, 2160 cm⁻¹ close to those of the free ligand [10] ruled out participation of the C=C-bonds in coordination. Characterization was completed by an independent synthesis from Ni(CO)₄. Similar arguments apply to the compound Ni(CO)₂(Ph₂PC=CPh)₂ obtained from [π -C₅H₅Ni(CO)]₂ or Ni(CO)₄ and Ph₂PC=CPh which therefore has a structure analogous to I. We have confirmed that the major product obtained on treating Ni(CO)₄ with Ph₂PC=CPh in refluxing benzene for 3 days is the monocarbonyl derivative Ni(CO)(Ph₂PC=CPh)₃ as previously reported [6].

The green air-sensitive complex $(\pi - C_5 H_5 Ni)_2$ (Ph₂PC=C-t-Bu) shows a parent ion at m/e 512 in the mass spectrum (Table 4). This ion fragments by loss of a PPh₂ radical, a neutral C₅H₆ molecule, a neutral tert-butylacetylene mole-

Compound	m/e (Relative abundance)					
(π-C ₅ H ₅ Ni) ₂ Ph ₂ - PC ₂ -t-Bu	512(15) 354(1) 262(33) 180(53) 123(24)	446(8) 327(9) 251(19) 178(39) 115(308)	430(2) 312(1) 246(5) 158(72) 91(84)	390(2) 308(1) 210(22) 154(54) 77(85)	370(2) 282(4) 188(39) 143(250)	364(1) 266(100) 183(47) 128(139)
(π-C5H5Ni)2Ph2- P(O)C2-t-Bu	528(79) 324(11) 245(24) 128(41) 77(50)	463(8) 305(11) 201(36) · 123(57)	447(6) 281(93) 188(100) 115(20)	405(36) 266(58) 158(30) 91(35)	340(28) 259(44) 143(86) 81(28)	
Ni(CO)2- (Ph2PC2-t-Bu)2	648(6) 397(1) 300(7) 209(260)	618(1) 385(2) 282(100) 189(110)	590(1) 383(2) 266(170)	490(2) 373(4) 251(12)	428(1) 369(1) 237(57)	423(3) 413(10 324(4) 221(99)
(π-C ₅ H ₅ Ni) ₂ Ph ₂ - P(O)C ₂ Ph	548(41) 360(40) 306(5) 282(3) 248(19) 201(10) 165(8)	450(10) 347(4) 305(11) 260(4) 238(7) 190(10) 154(5)	324(3) 302(9) 258(5) 236(15) 188(26) 152(5)	424(23) 312(4) 301(17) 250(5) 225(14) 179(20) 123(9)	404(1) 307(5) 283(4) 249(13) 219(25) 178(100)	
Ni(CO)3[(π-C5H5Ni)2- Ph2PC2Ph]	618(7) 424(30) 262(100) 183(127) 126(166)	550(2) 355(25) 248(67) 178(370) 113(84)	532(5) 344(13) 246(84) 165(78) 107(67)	466(3) 332(18) 189(33) 154(220) 88(55)	432(7) 280(14) 187(195) 142(78)	

^a For the complex Ni(CO)₂(Ph₂PC=CPh)₂ only a very poor mass spectrum could be obtained owing to decomposition in the mass spectrometer. The remaining complexes described in this paper were too involatile for mass spectral analysis.

Compound	ν(C≡C) ^b	ν(CO)		Other
$(\pi - C_5 H_5 Ni)_2 Ph_2 PC_2 - t - Bu$	1550 m			
$(\pi-C_5H_5Ni)_2Ph_2P(O)C_2$ -t-Bu $(\pi-C_5H_5Ni)_2(Ph_2P(Me)-$	1550 s			1179 s, 1165 m; v(P=O)
C_2 -t-Bu)I (π -C ₅ H ₅ Ni) ₂ (Ph ₂ P(Et)-	1531 s, 1525 (sh)			
C ₂ -t-Bu)Br	1530 s			
$PdCl_2[(\pi-C_5H_5Ni)_2-$				
$(Ph_2PC_2-t-Bu)]_2$	1545 s, 1530 (sh)			350 m; v(Pd—Cl)
Ni(CO) ₂ (Ph ₂ PC=C-t-Bu) ₂	2201 m, 2160 m	1999 s	2009 s	
		1983 s	1964 s	
		1935 s	(C ₆ H ₁₂)	
		1910 (sh)	(KBr)	
$(\pi-C_5H_5Ni)_2Ph_2P(O)C_2Ph$	1558 m			1193 m, 1186 m
				1177 s, ν(P=O)
Ni(CO) ₂ (Ph ₂ PC=CPh) ₂	2174	2018 s	2018 s	
		1985 (sh)	2007 (sh)	
		1950 s	2002 w	
-		1920 m	1962 (C ₆ H ₁₂	.)
$Ni(CO)_3[(\pi - C_5H_5Ni)_2 -$	1568 m	2060 s	2070 s	
Ph ₂ PC ₂ Ph]		1993 s	1997 s	
		1984 s	(C ₆ H ₁₂)	
		1947 ш		

^a Nujol mull unless other specified. ^b Bands in the 1500–1600 cm⁻¹ region are due to ν (C=C) coordinated to nickel.

TABLE 4

MASS	SPECTRA	AT 70 eV	OF NICKEL	COMPLEXES ^a
	0- 10 I AHII			

TABLE 5

INFRARED SPECTRA OF NICKEL COMPLEXES a (cm⁻¹)

TAB	LE	6
-----	----	---

Compound	Chemical shift	Assignment
$(\pi$ -C ₅ H ₅ Ni) ₂ (Ph ₂ PC ₂ -t-Bu)	7.80, 7.40 (m) 5.23 (s) 1.03 (s)	С ₆ Н5 <i>π</i> -С5Н5 —С(СН3)3
(π-C ₅ H ₅ Ni) ₂ (Ph ₂ P(O)C ₂ -t-Bu)	8.10, 7.50 (m) 5.22 (s) 1.25	С ₆ Н5 <i>π-</i> С5Н5 —С(СН3)3
(π-C5H5Ni)2(Ph2P(Me)C2-t-Bu)I	7.80, 7.33 (m) 5.42 (s) 3.01, 2.80 (d) [J(P-H) 12.6 Hz] 1.10 (s)	С ₆ H ₅ π-С ₅ H ₅ —СH ₃ —С(СН ₃) ₃
(π-C ₅ H ₅ Ni) ₂ (Ph ₂ P(Et)C ₂ -t-Bu)Br	7.60 (m) 5.44 (s) 3.27, 3.15 (double quartet) [² J(P-H) 6.0 Hz; ³ J(H-H) 3.5 Hz] 2.50, 2.30 (double triplet) [³ J(P-H) 10.0 Hz; ³ J(H-H) 3.5 Hz]	C_6H_5 $\pi-C_5H_5$ $-CH_2$ $-CH_3$
PdCl ₂ [(π-C ₅ H ₅ Ni) ₂ (Ph ₂ PC ₂ -t-Bu)]	2 8.00, 7.47 (m) 5.03 (s) 1.46 (s)	C ₆ H ₅ π-C ₅ H ₅ C(CH ₃) ₃
Ni(CO) ₂ (PhPC≡C-t-Bu) ₂	7.66, 7.33 (m) 1.58 (s)	С ₆ Н5 —С(СН3)3
$(\pi-C_5H_5Ni)_2(Ph_2P(O)C_2Ph)$	7.83 (m), 7.46 (m) 5.13 (s)	C6H5 π-C5H5
Ni(CO) ₂ (Ph ₂ PC=CPh) ₂	7.70 (m), 7.23 (m)	$-C_6H_5$
$Ni(CO)_3[(\pi-C_5H_5Ni)_2(Ph_2PC_2Ph)]$	7.70 (m), 7.33 (m) 5.16 (s)	С6Н5 <i>п-</i> С5Н6

NMR DATA FOR NICKEL COMPLEXES a

^a At 60 MHz in CDCl₃ with TMS as an internal reference. s, singlet, d, doublet, m, multiplet.

cule or a neutral $Ph_2PC \equiv C$ -t-Bu molecule to give ions at m/e 327, 446, 430 and 246 respectively. The ion $(\pi - C_5 H_5 Ni)_2^+$ (m/e 246) appears consistently in the mass spectra of binuclear π -cyclopentadienylnickel complexes and similar fragmentation mechanisms have been noted for analogous alkyne bridged π -cyclopentadienylmetal complexes [2, 18]. In the infrared spectrum $\nu(C \equiv C)$ of the ligand is absent but a new band of medium intensity at 1550 cm⁻¹ can be assigned to $\nu(C \equiv C)$ of a π -coordinated acetylene [2]. The NMR spectrum (Table 6) shows singlets due to a π -cyclopentadienyl group (10 protons) and a tert-butyl group (9 protons) together with a complicated phenyl proton resonance (10 protons). The assignment of structure II containing an uncoordinated phosphorus atom, follows from the above evidence and from the quaternization of the ter-

286

tiary phosphine in II on reaction with methyl jodide and ethyl bromide with the formation of the phosphonium salt complexes $[(\pi-C_5H_5Ni)_2(Ph_2P(R)C_2-t-Bu)]X$ (R = Me, Et; X = I, Br). NMR spectra for these complexes of the cationic ligands $Ph_2P^+(R)C = t-Bu$ (R = Me, Et) show, in addition to resonances present in $(\pi-C_5H_5Ni)_2$ (Ph₂PC₂-t-Bu), signals due to a P-CH₃ group [doublet; ²J(P-H) 12.6 Hz] and a P-CH₂CH₃ group [double quartet ${}^{2}J(P-H)$ 6.0 Hz, -CH₂-; double triplet ³J(P-H) 10.0 Hz, -CH₃; ³J(H-H) 3.5 Hz] respectively. These complexes are apparently the first reported examples of π -complexes of phosphonium salts. The acetylene complex $(\pi - C_5 H_5 Ni)_2 (Ph_2 PC_2 - t-Bu)$ can be simply and effectively converted to a new compound by passage through an alumina column using benzene as an eluant. This complex which is identical with the product obtained from band 4 in the $(\pi$ -C₅H₅)₂Ni/Ph₂PC=C-t-Bu reaction and band 5 in the $[(\pi - C_5 H_5)Ni(CO)]_2/Ph_2PC \equiv C$ -t-Bu reaction, shows new IR bands at 1179s and 1165 cm^{-1} typical of an uncoordinated phosphine oxide [19]. Otherwise spectral data (Tables 4 and 5) point to a close structural similarity with (π - $C_5H_5Ni_2$ (Ph₂ PC₂-t-Bu). Structure III having a π -bonded acetylenic phosphine

oxide ligand is assigned to this compound. An entirely analogous complex $(\pi - C_5 H_5 Ni)_2 [Ph_2 P(O)C_2 Ph]$ was obtained from the nickelocene or π -cyclopentadienylnickel carbonyl dimer reactions with Ph_2PC=CPh. Only two other organometallic acetylenic phosphine oxide complexes, $Co_2(CO)_6[(C_6F_5)_2 P(O)C_2 Ph]$ and $Co_2(CO)_6[Ph_2 P(O)C_2$ -t-Bu] [2] have so far been described. Such compounds are of course potential donor ligands since the phosphine oxide moiety is not directly involved in complexation.

The free "phosphine" $(\pi$ -C₅H₅Ni)₂ (Ph₂PC₂-t-Bu) may also be used as a donor ligand. Thus reaction with *trans*-(PhCN)₂PdCl₂ yields the palladium bis-(phosphine) complex *trans*-PdCl₂ [(π -C₅H₅Ni)₂Ph₂PC₂-t-Bu]₂ of structure IV.

Assignment of *trans* stereochemistry follows from the appearance of a single strong ν (Pd-Cl) frequency at 350 cm⁻¹ in the far-infrared spectrum which can

be compared with a value of 339 cm^{-1} in trans-PdCl₂(Me₃P)₂ [20] but frequencies of 300 and 316 cm⁻¹ in cis-PdCl₂(Ph₂PC=C-t-Bu)₂ [21]. The availability of only small quantities of $(\pi$ -C₅H₅Ni)₂(Ph₂PC₂-t-Bu) and its air sensitivity precluded further attempts to synthesize other polynuclear "phosphine" complexes of this type. In view of the isolation of $(\pi$ -C₅H₅Ni)₂(Ph₂PC₂-t-Bu), it seemed somewhat surprising that no product of this type could be separated from the Ph₂PC=CPh reactions. However, organometallic phosphines of type I might be expected to react further with $[\pi$ -C₅H₅Ni(CO)]₂ according to eqn. 1 or with Ni(CO)₄ produced via decomposition of the dimer to give trinuclear species of type V. A complex of type V (R = Ph) was indeed isolated from the $[\pi$ -C₅H₅-

Ni(CO)]₂/Ph₂PC=CPh reaction mixture. This compound exhibits ν (CO) infrared bands at 2070, 1997 cm⁻¹ in cyclohexane solution typical of an Ni(CO)₃L (L = phosphine) complex and a coordinated ν (C=C) band at 1568 cm⁻¹. The NMR spectrum (Table 6) shows phenyl ring and π -cyclopentadienyl proton resonances with area ratios 15/10. Although a parent ion was not found in the mass spectrum for this high molecular weight compound, fragment ions Ni(CO)[(π -C₅H₅Ni)₂Ph₂PC₂Ph] *m/e* 618, (π -C₅H₅Ni)₂(Ph₂PC₂Ph) *m/e* 532, and π -C₅H₅Ni₂(Ph₂PC₂C₆H₄) *m/e* 466 confirm the presence of the skeleton in V. Presumably (π -C₅H₅Ni)₂(Ph₂PC₂Ph) is converted rapidly into Ni(CO)₃[(π -C₅H₅-Ni)₂(Ph₂PC₂Ph) during the reaction or to (π -C₅H₅Ni)₂(Ph₂P(O)C₂Ph) on the column thus preventing its isolation.

Acknowledgements

We are grateful to the National Research Council of Canada for financial support of this research.

References

- 1 See for sxample, A.J. Carty and A. Efraty, Inorg. Chem., 8 (1969) 543; A.J. Carty, A. Efraty, T.W. Ng and T. Birchall, Inorg. Chem., 9 (1970) 1263; G, Beran, A.J. Carty, P.C. Chieh and H.A. Patel, J. Chem. Soc., Dalton. Trans., (1973) 488.
- 2 H.A. Patel, A.J. Carty and N.K. Hota, J. Organometal. Chem., 50 (1973) 247.
- 3 N.K. Hota, H.A. Patel, A.J. Carty, M. Mathew and G.J. Palenik, J. Organometal. Chem., 32 (1971) C55.
- 4 T. O'Connor, A.J. Carty, M. Mathew and G.J. Pelenik. J. Organometal. Chem., 38 (1972) C15.
- 5 K.S. Wheelock, J.H. Nelson and H.B. Jonassen, Inorg. Chem. Acta, 4 (1970) 399; R.B. King and P.N. Kapoor, Inorg. Chem., 11 (1972) 1524.
- 6 R.B. King and A. Efraty, Inorg. Chim. Acta, 4 (1970) 319.
- 7 W.G. Sly, J. Amer. Chem. Soc., 81 (1959) 18.
- 8 O.S. Mills and B.W. Shaw, J. Organometal. Chem., 11 (1968) 595.
- 9 J.F. Tilney-Bassett, J. Chem. Soc., (1961) 577.
- 10 A.J. Carty, N.K. Hota, H.A. Patel, T.J. O'Connor and T.W. Ng, Can. J. Chem., 49 (1971) 2706.

- 11 R.B. King, Inorg. Chem., 2 (1963) 936.
- 12 P.C. Ellgen, Inorg. Chem., 10 (1971) 232.
- 13 A.J. Carty, A. Efraty and T.W. Ng, Can. J. Chem., 47 (1969) 1429.
- 14 J.L. Boston, D.W.A. Sharp and G. Wilkinson, J. Chem. Soc., (1962) 3488,
- 15 P.C. Ellgen, Inorg. Chem., 11 (1972) 2279.
- 16 M. Dubeck, J. Amer. Chem. Soc., 82 (1960) 502.
- 17 L.S. Meriwether and M.L. Fiene, J. Amer. Chem. Soc., 81 (1959) 4200.
- 18 M.I. Bruce, Org. Mass. Spectrom., 1 (1968) 687.
- 19 I. Lindquist, Inorganic Adduct Molecules of Oxo-Compounds, Academic Press, New York, 1963.
- 20 R.J. Goodfellow, J.G. Evans, P.L. Goggin and D.A. Duddell, J. Chem. Soc. A, (1968) 1604.
- 21 R.T. Simpson and A.J. Carty, J. Coord. Chem., 2 (1973) 207.